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Abstract. This work presents a distributed algorithm for online negotiations of an optimal
control policy between dynamical systems. We consider a network of self-interested agents that
must agree upon a common state within a specified finite time. The proposed algorithm exploits
the distributed structure of the corresponding dual problem and uses a “shrinking horizon” property
to enforce the finite-time constraint. It is shown that this algorithm evolves like a time-varying
and linear dynamical system, parameterized by a scalar variable analogous to the step-size rule in
subgradient methods. The convergence and performance properties of the system are studied in the
context of error systems between the algorithm trajectories and a sequence of centralized optimal
control trajectories. This analysis provides a simple linear matrix inequality condition for choosing
a proper step-size rule and also gives conditions for when no step-size rule can guarantee uniform
convergence of the error systems. These conditions are shown to be functions of communication
graph Laplacian eigenvalues and the state and control weights of each agent. We also provide a lower
bound on the horizon time that guarantees that the terminal state generated by the algorithm is
δ-close to an agreement state. The results are then demonstrated via a few numerical simulations.
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1. Introduction. Distributed algorithms for large-scale optimization problems
are becoming increasingly important for a broad range of applications. These algo-
rithms are motivated by scenarios where access to global information is either un-
available or unattainable due to the constraints of the system. These include limited
computational resources, communication bandwidth, and power restrictions. While
the study of distributed algorithms is not new, it has gained recent attention in the
systems and controls community for its relevance to multiagent systems.

In multiagent systems, it is often the goal of a team of agents to achieve through
cooperation and coordination some global objective. Due to the same constraints
listed earlier, this team objective must be reached using distributed protocols for the
control and decision making of each agent. One of the most well-studied problems
related to this is known as the consensus, or agreement protocol [9, 11, 14]. In
agreement problems, each agent must agree upon a common value of interest (e.g., the
heading or velocity of a team of autonomous vehicles). Within the controls community,
a primary focus is on the application of these distributed protocols to physical systems.

The elegance of the agreement protocol lies in its simplicity. It comes as no
surprise that this algorithm also applies to other classes of problems beyond the
control of physical systems. In fact, the origins of the agreement protocol can be traced
to distributed computation and optimization problems [2, 17]. More recently, sub-
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A FINITE-TIME DUAL METHOD FOR NEGOTIATION 173

gradient algorithms have become a focal point for research in distributed optimization
[10, 6, 20]. Although the consensus problem and distributed optimization problems
are strongly related, a major difference is that in the latter the agents are not physical
entities but processing nodes.

There has been some recent work lying at the intersection of these two fields
focusing simultaneously on the control of physical systems and distributed solutions to
global optimization problems. Such a scenario has been considered in [7], where each
agent negotiates a consensus value based on some cost function using a distributed
optimization algorithm before controlling the physical system to that value. Dual
decomposition is used in [13] for an optimal distributed controller design. In [4], a
dual decomposition method is used to dynamically determine an optimal velocity for
a team of self-interested agents.

This paper studies a distributed optimization problem which is coupled to a phys-
ical control system. A team of self-interested agents is considered that should achieve
consensus at a specified time. In particular, we consider an ensemble of single inte-
grator agents each equipped with a quadratic cost function penalizing its distance to
a desired state, referred to as its “preference,” and its control energy. The agents are
only coupled by the consensus constraint at the end of a finite-time horizon. While this
problem can be formulated as a centralized optimal control problem (OCP), we study
a distributed solution that negotiates the optimal control policy in real time based
on a dual decomposition subgradient algorithm. Under the premise that communica-
tion and computation are not instantaneous, we assume that between communication
rounds, the agents are already moving in the direction they consider to be optimal
at that time instance. The dynamic element of this problem effectively changes the
parameters of the optimization problem, and we consider how this change deviates
from the solution of the centralized static case. The distributed dual subgradient
algorithm we develop relies on the notion of a shrinking horizon to account for the
dynamic changes in the system as time progresses. We term this the shrinking horizon
preference agreement (SHPA) algorithm.

The description and analysis of the SHPA algorithm constitute the main contri-
butions of this paper. In particular, we first show that the SHPA algorithm can be
described as a linear time-varying (LTV) dynamical system containing the physical
state of each agent and an augmented state associated with each edge in the commu-
nication graph. The augmented state can be interpreted as the Lagrange multiplier
associated with the terminal coupling constraint. The performance of the SHPA al-
gorithm, therefore, depends strongly on the trajectory of this augmented state. In
this direction, we also define an LTV error system between the augmented state and
the optimal multiplier value corresponding to the centralized OCP. The convergence
properties and performance of the SHPA and error dynamics LTV description de-
pend on the choice of a parameter analogous to the step-size rule for subgradient
algorithms. A surprising result highlights that under certain communication topolo-
gies and state and control weights for each agent, no step-size rule exists that can
guarantee uniform convergence of the LTV systems. For the general SHPA setup, we
present a feasibility linear matrix inequality (LMI) to determine the existence of a
step-size rule. In the special case where every agent has an identical cost function,
we derive explicit lower and upper bounds for the step-size that depend on the cost
function weights and the ratio of the largest and smallest nontrivial graph Laplacian
eigenvalues. We also provide a lower bound on the horizon time that guarantees
that the terminal state generated by the SHPA algorithm is δ-close to an agreement
state.
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174 DANIEL ZELAZO, MATHIAS BÜRGER, AND FRANK ALLGÖWER

The organization of the paper is as follows. In the next subsection we introduce
our notation. The general problem setup, including the formulation of the centralized
OCP, is given in section 2, which also reviews the static distributed dual subgradient
algorithm. In section 3 the SHPA algorithm is presented. A convergence and perfor-
mance analysis of the algorithm is given in section 4. Finally, in section 5 a simulation
example is given, and section 6 provides some concluding remarks.

Notation. The notation we employ is standard. The set of real numbers is
denoted R, and R> (R≥) is the set of positive (nonnegative) numbers. For a vector
x ∈ R

m, we denote its transpose by x′ and its ith component by x(i); the ijth element
of the matrix A is given as [A]ij . The all-ones vector of length m is denoted �m and Im
is the m×m identity matrix. The inner product of two vectors is denoted 〈x, y〉 = x′y;
the Euclidean norm of a vector x is denoted ‖x‖ = 〈x, x〉1/2. Similarly, the spectral
norm of a matrix A is denoted ‖A‖. The ith canonical basis vector for the Euclidean
vector space R

m is denoted ei,m; that is, ei,m ∈ R
m and [ei,m]j = 1 if j = i and 0

otherwise.
The communication structure between agents is captured by a graph G with node

set V = {v1, . . . , vn} and edge set E . A spanning tree is a connected graph with |V|−1

edges and does not contain cycles. The incidence matrix of the graph G, E ∈ R
n×|E|,

is a {0,±1}-matrix with rows and columns indexed by the vertices and edges of G
such that [E]ik has the value +1 if node i is the initial node of edge k, −1 if it is the
terminal node, and 0 otherwise [5]. In this work we consider only fixed topologies,
and for notational convenience we write only E for the incidence matrix.

2. The preference-based agreement problem. We study the problem of a
group of self-interested dynamical agents that must agree upon a common state at the
end of a given time horizon. The agents are modeled as a group of n single integrator
systems,

xi(t+ 1) = xi(t) + ui(t), xi(0) = xi0,(2.1)

with i = 1, . . . , n and xi(t) ∈ R. The state and control vector for all n agents
are denoted as x(t) = [x1(t), . . . , xn(t)]

′ and u(t) = [u1(t), . . . , un(t)]
′. Agents can

communicate with each other according to a fixed communication graph G, assumed
to be a spanning tree. Furthermore, we only consider synchronous communication,
where all agents communicate at the same time instant.

The self-interest of each agent is modeled as a quadratic objective, attaining its
minimum at a specific individual preference value ξi. Each agent aims to minimize
the objective

Ji(t0, T, xi, ui) =
1

2

(
T−1∑
t=t0

qi(xi(t+ 1)− ξi)
2 + riui(t)

2

)
,(2.2)

where qi, ri ∈ R> are the state and control weights. The individual agents are coupled
by a requirement to achieve agreement at the end of the time horizon T ; that is, there
is a terminal time constraint,

x1(T ) = x2(T ) = · · · = xn(T ) ⇔ E′x(T ) = 0.(2.3)
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From a centralized perspective, the preference-based agreement problem can be
stated as the OCP with terminal constraint

OCP (t0, T, x0) : min
x,u

n∑
i=1

Ji(t0, T, xi, ui)(2.4)

subject to (s.t.) x(t+ 1) = x(t) + u(t), x(t0) = x0,

E′x(T ) = 0.

We collect the entire state and control trajectories of each agent into the row
vectors xi =

[
xi(t0 + 1) · · · xi(T )

]
and ui =

[
ui(t0) · · · ui(T − 1)

]
. As

we are considering a team of n agents, we introduce further notation to streamline
the presentation. The boldface vectors x =

[
(x1)

′ · · · (xn)
′ ]′ ∈ R

n×(T−t0) and

u =
[
(u1)

′ · · · (un)
′ ]′ ∈ R

n×(T−t0) denote the complete trajectories for the state
and control of the entire ensemble of agents, and (x,u) denotes the optimal trajectory
generated by the solution of OCP (t0, T, x0). At times, we will be interested in the
state or control trajectory value for all agents at a particular time τ ; we will denote
this by x(τ) ∈ R

n×1 and u(τ) ∈ R
n×1.

Note that problem OCP (t0, T, x0) can be reformulated as a static quadratic
program. Using the new notation, the objective for each agent can be stated as
Ji(t0, T,xi, ui) =

1
2 (qi‖xi − �

′
T−t0

ξi‖2 + ri‖ui‖2) and the dynamic constraint as the
linear equation

xi = �
′
T−t0xi0 + uiB

′
T−t0 .(2.5)

Here, BT−t0 ∈ R
T−t0×T−t0 is defined such that [BT−t0 ]kl = 1 for k ≥ l and zero

otherwise.
Throughout this paper, we will not only rely on the primal problem formulation

(2.4), but we will often consider the dual problem. The dual problem is obtained by
relaxing the coupling constraint with a multiplier μ into the objective to obtain the
Lagrangian,

L(x,u, μ) =
n∑

i=1

Ji(t0, T,xi, ui) + μ′E′x(T ).(2.6)

The dual function is obtained by minimizing (2.6) subject to the dynamic constraint
(2.5), g(μ) = minx,u L(x,u, μ). The dual problem can thus be stated as

max
μ∈R|E|

g(μ).

We denote the optimal solution of the primal and dual problems as (x,u, μ). As
OCP (t0, T, x0) is a strictly convex problem (a quadratic program with linear con-
straints), we have strong duality which implies that g(μ) = J(t0, T,x,u) [15].

2.1. Shrinking horizon OCP. As a precursor to the main results of this work,
we briefly discuss the solution of the OCP as the problem parameters vary. In par-
ticular, we will be interested in how the OCP evolves as the time horizon shrinks and
the initial conditions change. For a given initial time t, we denote the time horizon as
T̃ = T−t. We denote the optimal solution of the primal and dual problems associated
with OCP (t, T, x(t)) by the triple(

x (t,x(t)),u (t,x(t)), μ(t,x(t))
)
∈ R

n×T̃ × R
n×T̃ × R

n−1.(2.7)
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T

xi(t), xj(t)

t
T − 10 1 2 · · ·

z

w

x(1,z)
j (1)

x(0,w)
i (0)

x(0,w)
i (1)

x(0,w)
i (2) = x(1,z)

j (2)

x(0,w)
i

x(1,z)
j

x(1,z)
j (T )

x(0,w)
i (T )

Fig. 2.1. Illustration of notation for optimal trajectories generated by the OCP .

When the initial condition used in OCP (t, T, x(t)) is unambiguously understood, we
use the shorthand notation xt, ut and μt for the state and control trajectories and dual
multipliers of all agents. Figure 2.1 gives an interpretation of our adopted notation.

Using our notation, we formally state the celebrated principle of optimality for
dynamic programming in the context of the OCP. This corresponds to solving a
sequence of OCPs where the initial condition of the subsequent problem is chosen to
be along the optimal trajectory of the system.

Lemma 2.1 (principle of optimality). The optimal trajectories generated by
OCP (t, T, z) and OCP (t+ 1, T, w) with w = z + u (t,z)(t) satisfy(
x (t,z)(τ), u (t,z)(τ), μ(t,z)

)
=
(
x (t+1,w)(τ), u (t+1,w)(τ), μ(t+1,w)

)
, τ = t+ 1, . . . , T.

Proof. Concerning the primal solution, the initial condition for OCP (t+ 1, T, w)
corresponds to the point x (t,z)(t+1). The remaining statement is a direct application
of the principle of optimality for dynamic programming [1], and its uniqueness is due
to the strict convexity of the problem statement. The statement concerning the
dual solution is a direct consequence of the first statement; in particular, we have
x(t,z)(T ) = x(t+1,w)(T ). A necessary condition for optimality is ∂L

∂x(T ) = Q(x(·,·)(T )−
ξ) +Eμ(·,·) = 0, where Q = diag{q1, . . . , qn}. The corresponding system of equations
admits a unique solution since the communication graph G is restricted to a spanning
tree.

2.2. Distributed dual subgradient solution method. The original problem
we aim to solve is OCP (t0, T, x0). Note that the problemOCP (t0, T, x0) is completely
separable in its objective and is coupled only through the terminal time constraint
(2.3). A standard procedure for solving OCP (t0, T, x0) in a distributed fashion is thus
through a dual decomposition subgradient algorithm [15] that we review here. The
algorithm solves the dual problem, based on the Lagrangian,

L(xt0 ,ut0 , μ) =
n∑

i=1

Ji(t0, T,x
t0
i , ut0

i ) + μ′E′xt0(T ).

Since μ is associated with each edge in G, we can consider instead the variable asso-
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ciated with each agent by defining

γ = Eμ.(2.8)

The Lagrangian can be written as a function of γ as

L(xt0 ,ut0 , γ) =

n∑
i=1

Ji(t0, T,x
t0
i , ut0

i ) + γix
t0
i (T ).(2.9)

As we have already mentioned, the dual function is obtained by minimizing (2.9)
subject to the dynamic constraint (2.5), g(γ) = minxt0 ,ut0 L(xt0 ,ut0 , γ).

The important feature of this formulation is that the dual function q(γ) is com-
pletely separable across each agent. This then motivates the dual subgradient algo-
rithm, which can be stated as follows. At each iteration step k of the algorithm,
the dual function is computed for a fixed value of γ̂[k]. (For k = 0 the multiplier is
initialized to some arbitrary value.) That is, each agent solves the following quadratic
program, QPi(k):

(x̂
[k+1]
i , û

[k+1]
i ) = arg min

x̂
[k]
i ,û

[k]
i

Ji(t0, T, x̂
[k]
i , û

[k]
i ) + γ̂

[k]
i x̂

[k]
i (T )(2.10)

s.t. x̂
[k]
i = �

′
T̃
xi0 + û

[k]
i B′

T̃
.(2.11)

Here we have temporarily abused our notation to facilitate this discussion. The su-
perscript, as in γ[k], denotes the iteration count for the subgradient algorithm, and

the notation (x̂
[k]
i , û

[k]
i ) denotes the optimization variables for QPi(k). While ensuring

that the initial values of the dual variables satisfy γ[0] = Eμ[0], the next step is then
to update the multiplier using the subgradient as

γ̂[k+1] = γ̂[k] + α[k]EE′x̂[k+1](T ).(2.12)

The subgradient for the edge multiplier μ is precisely E′x̂[k](T ), and using (2.8) leads
to (2.12). The matrix EE′ is the graph Laplacian of G [5]. The choice of the step-size
α[k] is critical for the convergence properties of this algorithm. While there are many
step-size rules that can guarantee convergence of this algorithm, tuning the step-
size to achieve desirable convergence rates can be nontrivial. With a suitable choice
for the step-size, the subgradient algorithm will converge to the optimal solution of
OCP (t0, T, x0),

lim
k→∞

(x̂[k], û[k], γ̂[k]) = (x (t0,x0),u (t0,x0), Eμ (t0,x0)).

For a more detailed discussion of appropriate step-size rules and subgradient methods
the reader is referred to [15].

The appeal of this method is that the update rule (2.12) is inherently distributed.

That is, each agent can compute the value γ
[k+1]
i to use in the next iteration step

solely through communication with its neighbors, as defined by the communication

graph G. In particular, agent i must only send the value x̂
[k]
i (T ) to all neighboring

agents.
While the subgradient algorithm is attractive due to its distributed and relatively

simple architecture, we note that this algorithm must be performed before each agent
can begin moving along its optimal trajectory. Indeed, for good convergence of the
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algorithm, it may be required to run for a time significantly longer than the desired
horizon time T . This then motivates the question of whether it is possible to derive
an algorithm that can be implemented online. That is, we would like to develop an
algorithm where each iteration step corresponds to the actual physical time, while
additionally propagating the agents along a calculated trajectory. Such an algorithm
should also negotiate the final consensus value in real time and, if possible, satisfy
the terminal time constraint at the real time T while simultaneously minimizing the
local performance index for each agent.

3. Shrinking horizon preference agreement algorithm. The need for a
real-time distributed algorithm for solving problem OCP (t0, T, x0) is based on the
assumption that the time required to compute a sufficiently good solution using an
offline algorithm corresponds to a period where agents must remain idle. If we consider
the horizon time T as an absolute deadline, then an optimal strategy would require
each agent to move toward their preference state in order to minimize their individual
objectives before maneuvering to the consensus state.1

In this direction, we propose a real-time preference-based agreement algorithm
inspired by the subgradient algorithm. The general strategy of this algorithm is
to physically propagate the states forward at each iteration. The corresponding sub-
problem to be solved at the next time step is the quadratic program QPi(t), described
in (2.10), but with the horizon window reduced; instead of minimizing from t = 0 to
the horizon T , we minimize from t = 1. It can be considered as a shrinking-horizon
subgradient algorithm. Here we recall that the state signal xi(t) corresponds to the
true physical state of agent i at time t, and the vectors x̂t

i and ût
i correspond to

the optimization variables associated with problem QPi(t). Note also that as time

progresses, the window is shrinking, and x̂t
i, û

t
i ∈ R

T̃ , T̃ = T − t. See Algorithm 1 for
a description.

Algorithm 1. SHPA algorithm.

Data: Initial conditions xi(0) = xi0 and μ(0) = μ0; t = 0.
begin

for t := 0 to T-1 do

γt = Eμ(t), T̃ = T − t
Each agent solves the subproblem QPi(t):

min
x̂i(t),ûi(t)

Ji(t, T, x̂
t
i, û

t
i) + γt

i x̂
t
i(T ) s.t. x̂t

i = �T̃xi(t) +BT̃ û
t
i.(3.1)

The physical state and multipliers are propagated forward using the
solution of QP i(t):

xi(t+ 1) = xi(t) + ût
i(t), i = 1, . . . , n,(3.2)

μ(t+ 1) = μ(t) + α(t)E′x̂t(T ),(3.3)

where α(t) satisfies some step-size rule.

1This reasoning assumes that T is sufficiently large. For a shorter horizon each agent might not
have enough time to reach its preference.
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At the discrete time instant t < T , each agent i solves an OCP with the finite
horizon T̃ = T−t, using the given μ(t) for the estimated terminal constraint multiplier
value. The optimal solution of QPi(t) is then used to propagate the actual physical
system state, xi(t), forward. The new state is then used as the initial condition for
the subsequent iteration. The key point here is that at each step of the algorithm,
the agents are physically moving along the optimal trajectory calculated for a given
multiplier value.

The relation of the SHPA algorithm to the dual subgradient methods should
be clear from the update equation of the multiplier μ(t). The primary difference,
as already mentioned, is that at each time step the physical state of the system is
changing, and the corresponding subproblem QPi(t) is also modified. In this way, the
SHPA algorithm can be interpreted as a dynamic negotiation protocol to determine
the consensus value. The multipliers γi(t) can then be considered as a kind of estimate
by each agent of the preferences of neighboring agents.

A main result of this work is that the trajectories produced by Algorithm 1 are
equivalent to the trajectories of an LTV dynamical system. The following theorem
summarizes this result.

Theorem 3.1. Algorithm 1 is equivalent to the linear dynamical system[
x(t+ 1)
μ(t+ 1)

]
=

[
I − P (T̃ ) −R−1K(T̃ )E

α(t)E′K(T̃ ) I − α(t)E′Q−1P (T̃ )E

][
x(t)
μ(t)

]
+

[
P (T̃ )

E′(I − α(t)K(T̃ ))

]
ξ

(3.4)

with T̃ = T − t, Q = diag{q1, . . . , qn}, R = diag{r1, . . . , rn} the weights of the
optimization problem, and P (T̃ ) = diag{P1(T̃ ), . . . , Pn(T̃ )}, K(T̃ ) = diag{K1(T̃ ), . . . ,
Kn(T̃ )} with each component satisfying the recursion

Pi(T̃ + 1) =
1 + ri

qi
Pi(T̃ )

1 + ri
qi

+ ri
qi
Pi(T̃ )

, Pi(1) =
qi

ri + qi
,(3.5)

Ki(T̃ + 1) =
ri
qi

Ki(T̃ )

1 + ri
qi

+ ri
qi
Pi(T̃ )

, Ki(1) =
ri

ri + qi
.(3.6)

The proof of the theorem is fairly lengthy and is therefore presented in Ap-
pendix A. The main effort for the proof is the derivation of the recursion expressions
for the constants Pi(T̃ ) andKi(T̃ ). We also make use of the analytic solutions for ût

i(t)
and x̂t(T ), which can be derived directly from the quadratic program subproblem in
the SHPA algorithm; we present the expresions here for completeness:

ût(t) = −P (T̃ )(x(t) − ξ)− R−1K(T̃ )Eμ(t),(3.7)

x̂t(T ) = K(T̃ )(x(t) − ξ) + ξ −Q−1P (T̃ )Eμ(t).(3.8)

System (3.4) has strong similarities to the classical finite horizon linear quadratic
regulator (LQR) control problem. In fact, the time-varying constants Pi(T̃ ) are pre-
cisely the time-varying finite horizon LQR gains.

Corollary 3.2. The gains Pi(T̃ ) are the time-varying finite horizon LQR con-
troller gains for agent i with state and control weights qi and ri, respectively.

The details of the proof are omitted for brevity, noting the equivalence can be
obtained directly from the LQR Riccati and controller recursions [8].

Although the similarity of the x(t) dynamics to a finite horizon LQR problem
is not too surprising, it is remarkable that the same controller gains reappear in the
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update rule for the multipliers μ(t). Note that these gains can be computed offline and
independently of the algorithm, as they require no knowledge of the global objective
or communication topology. Furthermore, the LQR gains associated with each agent
are in fact unrelated to the general statement of our control problem; there is no
information contained in those gains about the team objective.

The structure of (3.4) also shows that each agent is driven by its deviation from
its preference state (the term P (T̃ )(x(t)−ξ)) and a terminal state correction term via
the multiplier γ(t) (the term R−1K(T̃ )Eμ(t)). We also note that the update equation
for the multiplier values resembles that of the standard consensus protocol. The μ(t)
dynamics contain the term E′Q−1P (T̃ )E, which is a weighted edge Laplacian of the
graph G. Dynamics induced by the edge Laplacian were shown to be equivalent to
the standard consensus problem in [19].

The LTV representation (3.4) of Algorithm 1 is compelling for a few reasons. With
this representation we are able to directly analyze the stability and convergence prop-
erties of the algorithm using tools from linear systems theory. In particular, we note
that the only free parameter in (3.4) is the step-size α(t).2 The proper choice for α(t)
can then be cast as a stabilization and performance problem for the system in (3.4).

Having established that the shrinking horizon algorithm evolves like a linear time-
varying system with a consensus-like structure, it remains to analyze the convergence
properties of the algorithm, which we show in what follows.

4. Performance and convergence analysis. Recall that the coupling con-
straint of the OCP requires all agents to agree upon a common state at the end of
the horizon T , as stated in (2.3). A reasonable measure for the performance of this
algorithm, therefore, is how far the agents are from consensus at the horizon time T .
This is captured by the norm of the consensus state,

‖E(G)′x(T )‖.(4.1)

Note that for the centralized solution (e.g., problem OCP (t, T, x)) this quantity is
precisely zero. In this direction, we observe that at each time t and state x(t), there
is a corresponding optimal multiplier value, μt, associated with the centralized OCP,
OCP (t, T, x(t)), that will lead to perfect consensus. This value will, in general, be
different from μ(t), generated by (3.4). Therefore, the error between μt and μ(t) is
an indicator of the performance of the SHPA algorithm.

We can make this statement more explicit by first deriving an explicit expression
for the multiplier associated with OCP (t, T, x(t)). We use the fact that the optimal
control input and the optimal terminal state can be computed from the expressions
(3.7) and (3.8) by replacing the multiplier μ(t) with the optimal multiplier μt, i.e.,

(ut(t),xt(T )) = (ût(t), x̂t(T ))|μ(t)=μt .(4.2)

Corollary 4.1. The optimal multiplier values μ t corresponding to the problem
OCP (t, T, x(t)) is given as

μ t =
(
E′Q−1P (T̃ )E

)−1

E′
[
K(T̃ )(x(t) − ξ) + ξ

]
.(4.3)

Proof. The primal feasibility of the problem OCP (t, T, x(t)) guarantees the satis-
faction of the terminal time constraint, E′x(t,x(t))(T ) = 0. The terminal state value as
a function of the optimal multiplier μ t can be computed directly from (3.8) and (4.2).
The invertability of the matrix E′Q−1P (T̃ )E is given since Q−1P (T̃ ) is a positive

2Although specified as a time-varying function, we note that a constant step-size rule will also
suffice.
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diagonal matrix. Thus E′Q−1P (T̃ )E is a weighted edge Laplacian of a tree, having
only non-zero eigenvalues [19].

The key feature, which we restate here, is that at each time horizon and state
pair, there exists a unique optimal multiplier μ(t,x(t)) leading to perfect consensus.
sequence μ t perfectly, then the system should reach the consensus state exactly, and
E(G)′x(T ) = 0. If the multipliers generated by (3.4) are able to track the multipliers μt

associated with a sequence of OCPs varying along the state trajectories of (3.4), then
the terminal constraint can be met exactly. We are now prepared to consider the mul-
tiplier estimation error between the system (3.4) and the optimal multiplier values μ t,

ε(T̃ , x(t)) = μ(t) − μ (t,x(t)),(4.4)

for performance analysis. For notational convenience we will sometimes write ε(t) in
place of ε(T̃ , x(t)).

This highlights a significant difference between an implicit objective of the shrink-
ing horizon agreement algorithm and the static dual decomposition subgradient al-
gorithm used to solve OCP (t0, T, x0). In particular, for the dual decomposition sub-
gradient algorithm, it is desired that the multiplier at each iteration k, μ[k] converge
to the multiplier for the centralized problem, μ0 := μ(t0,x0) ( limk→∞ ‖μ[k]−μ0‖ → 0).
In contrast, with the shrinking horizon agreement algorithm, we want the multiplier
estimate to satisfy

lim
t→T

‖μ(t)− μ(t,x(t))‖ → 0.

We can now analyze how the error ε(t) evolves along the trajectories of the system
(3.2), (3.3). A main result of this work, therefore, is the observation that the error
evolves as a time-varying linear system with the step-size α(t) as a parameter. We
summarize the result in the following theorem.

Theorem 4.2. The error ε(t) = μ(t) − μ(t,x(t)) evolves according to the time-
varying linear dynamics

ε(t+ 1) =
(
(E′Q−1P (T̃ − 1)E)−1 − α(t)I

)
E′Q−1P (T̃ )Eε(t).(4.5)

The proof is provided in Appendix B.
The LTV presentation of the error dynamics highlights the important role of the

step-size α(t). Indeed, a poorly chosen step-size can in fact destabilize the system.
This mirrors the same difficulties encountered with choosing step-sizes for subgradient
methods. However, considering the real-time version of the dual subgradient algorithm
gives rise to a novel phenomenon, which has no correspondence in the static case. In
this direction, we first present a definition describing a basic notion of stability for
finite horizon discrete time systems.

Definition 4.3. The autonomous finite horizon discrete time system x(t+ 1) =
A(t)x(t) for t = 0, . . . , T − 1 is said to be uniformly decreasing if ‖x(t+1)‖ < ‖x(t)‖
for each time t and independent of the initial condition.

The existence of a desirable step-size can be stated as a feasibility problem of
a corresponding semidefinite program. In particular, if the eigenvalues of the state
matrix for (4.5) lie strictly in the unit disc for all time, then the error will be uniformly
decreasing over the time horizon. This can be stated as an LMI condition.

Lemma 4.4. There exists a step-size α(t) such that the error dynamics in (4.5)
is uniformly decreasing if and only if the following LMI condition is feasible:

−I ≤ L
1/2
t L−1

t+1L
1/2
t − α(t)Lt ≤ I(4.6)

with Lt = E′Q−1P (T̃ )E.
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Proof. The state matrix in (4.5) is similar to the symmetric matrix L
1/2
t L−1

t+1L
1/2
t −

α(t)Lt. The LMI in (4.6) ensures the eigenvalues of (4.5) lie in the interval
(−1, 1).

It is worth emphasizing that this LMI condition depends only on the communi-
cation graph and the LQR gains of each agent. For the special case where each agent
has identical state and control weights, but different preference values, we can obtain
an analytic condition indicating whether the LMI in (4.6) is feasible.

Corollary 4.5. Assume Q = qI and R = rI. Then there exists a step-size α(t)
such that (4.5) is uniformly decreasing if and only if

λmax(E
′E)

λmin(E′E)
< 3 + 2

((q
r

)2
+ 3

q

r

)
.

The proof is provided in Appendix C. When this condition is satisfied, we obtain
the following interval for step-sizes leading to uniformly decreasing error dynamics:3

q

λmin(E′E)P (T̃ )

(
P (T̃ )

P (T̃ − 1)
− 1

)
< α(t) <

q

λmax(E′E)P (T̃ )

(
P (T̃ )

P (T̃ − 1)
+ 1

)
.(4.7)

In fact, the lower and upper bounds can be obtained explicitly from the recursion
(3.5). Due to the monotonicity of the recursion, the lower and upper bounds will be
obtained at either the beginning or the end of the recursion (i.e., at P (1) and P (2)
or P (T − 1) and P (T − 2)), and this depends on whether the ratio riq

−1
i is greater or

less than unity.
This result is compelling for a few reasons. On the one hand, it provides a rel-

atively easy and tractable way to find (if one exists) a step-size. This is in stark
contrast to static subgradient methods, where the choice of the step-size can be non-
trivial. On the other hand, and contrary to static subgradient methods, this highlights
that under certain conditions there will not be a step-size that can guarantee a uni-
formly decreasing error dynamics. Furthermore, the importance of the communication
graph itself is highlighted in this result. Indeed, for general graphs including cycles,
the eigenvalue ratio is related to graph expanders [5]. For the case of spanning trees,
this ratio has not been explored much in the literature, and this result points to an
interesting connection between optimization performance and structural properties of
the graph.

The above results relate to the performance of the error system for the multiplier
values. It is also worth investigating how this impacts the error of the primal system
and, in particular, the error of the terminal state as described in (4.1). Recall that
the algorithm computes at each time step a prediction of the terminal state x̂t(T )
and uses the next-step optimal control to propagate the state forward at each time.
Therefore, the terminal state x(T ) is precisely equal to the predicted state x̂T−1(T ) at
the last step in the algorithm. This motivates a study of the “predicted disagreement”
for the system

e(t) = E′x̂t(T ).(4.8)

It is clear that E′x(T ) = e(T − 1).

3Note that when the control and state weights are identical, the LQR gains Pi(T̃ ) are also
identical.
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Theorem 4.6. The predicted disagreement e(t) = E′x̂t(T ) evolves according to
the LTV dynamics

e(t+ 1) =
(
I − α(t)E′Q−1P (T̃ − 1)E

)
e(t).(4.9)

Proof. Using (3.8), we can express the predicted disagreement at time t, e(t) =
E′x̂t(T ), in terms of the multiplier value μ(t). Alternatively, we can express this term
as a function of the estimation error ε(t) as

e(t) = E′K(T̃ ) (x(t)− ξ)− E′Q−1P (T̃ )Eμ(t) + E′ξ

= E′K(T̃ )(x(t) − ξ)− E′Q−1P (T̃ )Eμ (T̃ ,x(t)) + E′ξ − E′Q−1P (T̃ )Eε(t).(4.10)

Note that if the optimal multiplier μ (T̃ ,x(t)) is used to compute the state trajectories
at time t, then the final consensus error will be identically zero. (This is equivalent to
the centralized solution to OCP (t, T, x(t)).) Therefore, all terms except the last one
in (4.10) vanish, and what remains is an expression relating the predicted terminal
state error as a function of the multiplier error, ε(T̃ , x(t)),

e(t) = −E′Q−1P (T̃ )Eε(T̃ , x(t)).(4.11)

Propagating the error state forward and using the dynamics for the multiplier error
dynamics in (4.5) leads to the desired result.

This result can be used to determine bounds on the agreement error (4.1) by ex-
amining the state-transition matrix. We note that these bounds will depend explicitly
on the parameter α(t), the properties of the graph, and the LQR gains for each agent.
In this work, we focus on how this result leads to a new condition for the step-size
rule α(t) that guarantees the error e(t) is uniformly strictly decreasing.

Corollary 4.7. The predicted terminal disagreement ‖e(t)‖ is uniformly de-
creasing if and only if

0 < α(t) < 2λ−1
max(E

′Q−1P (T̃ − 1)E),(4.12)

where λmax(E
′Q−1P (T̃ − 1)E) is the largest eigenvalue of the positive definite matrix

E′Q−1P (T̃ − 1)E.
Proof. For α(t) satisfying (4.12), all eigenvalues of the symmetric matrix (I −

α(t)E′Q−1P (T̃ − 1)E) are located between (−1, 1).
This result has several implications. Depending on the problem parameters it

might be impossible to achieve a uniform decrease of the dual error ‖ε(t)‖ while still
being possible to achieve a uniform decrease of the predicted final disagreement ‖e(t)‖.
However, in order to achieve perfect agreement, e.g., E′x(T ) = 0, it is necessary that
ε(T̃ − 1) = 0. This suggests that although a step-size can be chosen to ensure the
consensus error decreases at all times, it cannot guarantee that the error is made
arbitrarily small in finite time.

As with the multiplier error dynamics, we are also able to state a stronger result
when the control and state weights for each agent are identical.

Corollary 4.8. Assume Q = qI and R = rI. Then there exists a step-size α(t)
that achieves a uniform decrease of ‖e(t)‖ if and only if

0 < α(t) < 2
q

P (T − 1)λmax(E′E)
, t = 0, . . . , T − 1.
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Here we observe that the largest eigenvalue of the graph Laplacian will limit the
range of allowable step-sizes. This is in contrast to the case for the multiplier error
dynamics, which also depends on the smallest eigenvalue.

Our discussion until now has assumed the horizon time is given in the problem
formulation. It is also worth investigating the complementary question asking what is
the minimum horizon time that can guarantee the SHPA terminates with a terminal
disagreement less than some bound.

Corollary 4.9. Consider the SHPA algorithm over a fixed spanning tree G with
a constant step-size α satisfying Corollary 4.7. For any δ > 0 with δ < ‖e(0)‖, there
exists a T (δ) satisfying

T (δ) =
ln
(

δ
‖e(0)‖

)
ln
(
1− αλmin(E′Q−1PE)

) + 1

with 0 < P ≤ P (T̃ ) for all t such that for any T ≥ T (δ), the terminal disagreement
error e(T − 1) = E′x(T ) satisfies the bound ‖e(T − 1)‖ < δ.

Proof. The critical horizon time T (δ) can be obtained directly from the dynamics
of the predicted disagreement (4.9). In particular, we have that

e(T − 1) =

T−2∏
t=0

(
I − αE′Q−1P (T̃ − 1)E

)
e(0),

and using the submultiplicative property of the spectral norm we obtain

‖e(T − 1)‖ ≤
(

T−2∏
t=0

∥∥∥(I − αE′Q−1P (T̃ − 1)E
)∥∥∥
)
‖e(0)‖.

It is straightforward to verify that there exists a lower bound on the recursions given in
(3.5) that depends only on the weights qi and ri and is independent of the horizon T .
Stated in another way, there exists a matrix P > 0 that depends only on qi and ri such
that P ≤ P (T̃ ) for all t and T . This in turn implies that ‖(I−αE′Q−1P (T̃ −1)E)‖ ≤
‖(I − αE′Q−1PE)‖ for all t and T , leading to

‖e(T )‖ ≤
(
1− αλmin(E

′Q−1PE)
)T−1 ‖e(0)‖ ≤ δ.

Taking the logarithm of the above expression and solving for T leads to the desired
bound.

Corollary 4.9 provides a condition for determining if a specified horizon is “long
enough” for the SHPA algorithm to terminate within a certain tolerance of an agree-
ment state. Note that this bound will depend explicitly on the choice of the spanning
tree, the control and state weights of each agent, and the initial conditions. In fact,
as λmin(E

′Q−1PE) corresponds to the smallest nontrivial eigenvalue of a weighted
Laplacian matrix [19], one can conclude that trees with large algebraic connectivity
will lead to shorter horizon times for a given bound on δ.

We conclude this section with a brief discussion on the optimality gap between the
trajectories generated by OCP (t0, T, x(t0)) and the SHPA algorithm. As discussed,
the SHPA cannot be expected to achieve an exact consensus in T steps. However,
Corollary 4.9 also implies that as the horizon time grows, the terminal agreement
error can be arbitrarily close to zero. This mimics the behavior of the traditional
subgradient methods that only achieve the optimal solution asymptotically.
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To compare the different trajectories in a meaningful way, we must consider the
evaluation of the Lagrangian function (2.6) along the different trajectories. To sim-
plify the discussion, we denote the optimal trajectories generated by OCP (t0, T, x(t0))
as (x,u), and the trajectories generated by the SHPA algorithm as (x(t), u(t)).4 For
evaluating the Lagrangian, we also use the optimal multiplier value associated with
OCP (t0, T, x(t0)), denoted μ. The first observation that follows directly from the dis-
cussion of section 2.1 is that if the multiplier state in the SHPA algorithm is initialized
as μ(t0) = μ, then the generated trajectories will be optimal; that is, L(x,u, μ) =
L(x, u, μ). For any other initial condition, one must have that L(x,u, μ) < L(x, u, μ).
Therefore, the optimality gap can be characterized by the ratio

Δ =
L(x, u, μ)
L(x,u, μ) .(4.13)

The performance of the SHPA algorithm can be measured using this gap and will
depend on the horizon time T , the state and control weights for each agent, and the
spectrum of the communication graph. The saddle-point property stated above guar-
antees that this ratio will always be greater than unity, providing a clear measure of
suboptimality. The effects of these system parameters will be explored in the following
via simulation.

5. Simulation results. We provide two different simulations to support our
results. In both studies we simulate a system with six agents over a time horizon of
30 steps. The communication graph is chosen as a random tree in each simulation.
Each agent has a unique initial condition, preference state, and individual weights
for its state and control, which are all chosen randomly. We use a constant step-size
which is chosen such that, at the initial time, the eigenvalues of E′Q−1P (1)E are
contained in the unit disc.

For the first simulation, which is shown in Figures 5.1 and 5.2, the values of qi and
ri are chosen randomly as integers from the interval [0, 10]. The constant step-size
used for the simulations is α = 3.4025. Figure 5.1 shows the x(t) and μ(t) trajectories
produced by Algorithm 1. Note that the agents approach the consensus state but do
not attain it exactly. Figure 5.2 shows the two error functions, ε(t) and e(t). Both
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Fig. 5.1. Simulation of SHPA algorithm with ri of O(1); (a) trajectories for x(t) and (b)
trajectories for μ(t).

4The control generated by the SHPA algorithm can be obtained from the states x(t) and μ(t)
using (3.7).
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Fig. 5.2. Dual error ε(t) and predicted terminal disagreement e(t) for the SHPA algorithm with
ri of O(1).
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Fig. 5.3. Simulation of SHPA algorithm with ri of O(104): (a) trajectories of x(t) and (b)
trajectories of μ(t).
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Fig. 5.4. Dual error ε(t) and predicted terminal disagreement e(t) for the SHPA algorithm,
with ri of O(104). Note the unstable trajectory of ε(t) while e(t) is uniformly decreasing.

functions are uniformly decreasing. One can verify that both conditions 4.12 and 4.6
are satisfied at all times.

The second simulation, illustrated in Figures 5.3 and 5.4, shows a different result.
The problem setup is similar, i.e., initial conditions, preferences, and state weights
qi are randomly chosen in the same order of magnitude as for the first simulation.
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Fig. 5.5. A plot of the optimality ratio between the optimal trajectories generated by
OCP (t0, T, x(t0)) and the trajectories generated by the SHPA algorithm. The trajectories were
computed for increasing time horizons T (x-axis) and for three different graphs.

But the control weights ri are now chosen as integers from the interval [0, 104]. The
step-size used for this simulation is α = 36.2263. The primal trajectories x(t) still
approximate a consensus state at the end of the horizon. However, it can be clearly
seen that the dual error ε(t) is increasing as the time is approaching the end of the
horizon. It can be verified that the LMI condition 4.6 is infeasible for t > 20. However,
condition 4.12 is satisfied at all times and the error e(t) is uniformly decreasing. These
results are fully according to the theoretical analysis provided in section 4.

Finally, we provide a simulation illustrating the implications of Corollary 4.9 and
the discussion on the optimality gap Δ given in (4.13). Figure 5.5 plots Δ as a
function of the horizon time T for different trajectories using three different graphs:
the path graph, the star graph, and a random graph (all on five nodes). Observe
that as the horizon increases, the ratio approaches unity, while the structure of the
communication graph affects the rate of convergence.

6. Concluding remarks. This work presented a real-time and distributed al-
gorithm for solving a finite-time preference-based consensus problem. In this setting,
the finite-time horizon becomes a critical feature that motivated our proposed algo-
rithm. In particular, the algorithm negotiates the consensus value in real time while
simultaneously propagating the physical state of each agent along a trajectory be-
lieved to be optimal. This is in contrast to methods that require the consensus state
to be negotiated before the agents are able to move along their trajectories.

The SHPA algorithm is closely related to dual subgradient methods. We showed
that our proposed algorithm is equivalent to an LTV dynamical system, parameter-
ized by a step-size variable. The LTV system also contains a set of augmented states
representing a dynamic version of the Lagrange multiplier associated with the termi-
nal constraint. Analysis of the SHPA algorithm reveals a close connection between
the Lagrange multiplier associated with a centralized version of the preference-based
agreement protocol and the trajectories of the multipliers generated by the LTV de-
scription. This leads to an LTV error system description for both the multipliers and
the terminal state estimate. Analysis of these systems provides conditions for when
a step-size rule exists that can guarantee the error is uniformly decreasing. In partic-
ular, we show that for certain instances of the problem, e.g., certain communication
graphs and state and control weights, no step-size rule exists that guarantees uniform
decreasing of the multiplier error dynamics.

One of the more salient features of this work is the numerically tractable and con-
ceptually simple guideline for checking for the existence of and choosing a step-size
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rule for achieving good performance. This is in stark contrast to general methods
for subgradient algorithms, where choice of the step-size rule can be nontrivial. Fur-
thermore, the role the communication graph plays in this setting points to a new
role for the largest and smallest eigenvalues of the graph Laplacian. The presented
work provides a foundation for considering various extensions, including the effects
of a state-dependent or switching communication structure and more general agent
dynamics.

Appendix A. Proof of Theorem 3.1. We begin by presenting an explicit
solution to QPi(t), as stated in (3.1). Note that the subproblems solved at time t are
linear quadratic OCPs with the initial condition x(t) and the time horizon T̃ = T − t.
As noted in section 2.2, these problems are linearly constrained quadratic programs
and therefore admit an analytic solution [3]. The SHPA algorithm requires the next-
step optimal control input and the terminal state value,

ût
i(t) = e′

1,T̃
ût
i, x̂t

i(T ) = e′
T̃ ,T̃

x̂t
i.

We can now express ût
i(t) and x̂t

i(T ) from the analytic solution of QPi(t) as

ût
i(t) = −r−1

i e′
1,T̃

B′
T̃
Γ−1
i (T̃ )�T̃xi(t) + r−1

i e′
1,T̃

B′
T̃
Γ−1
i (T̃ )�T̃ ξi

− r−1
i q−1

i e′
1,T̃

B′
T̃
Γ−1
i (T̃ )eT̃ ,T̃γi(t),(A.1)

x̂t
i(T ) = q−1

i e′
T̃ ,T̃

Γ−1
i (T̃ )�T̃xi(t)− (q−1

i e′
T̃ ,T̃

Γ−1
i (T̃ )�T̃ − 1)ξi

+ q−1
i (q−1

i e′
T̃ ,T̃

Γ−1
i (T̃ )eT̃ ,T̃ − 1)γi(t).(A.2)

The matrix Γi(T̃ ) for each agent, parameterized by the horizon T̃ , appears in the
analytic solution of QPi(t) and is defined as

Γi(T̃ ) := q−1
i IT̃ + r−1

i BT̃B
′
T̃
.(A.3)

Note that these expressions are functions of the current state xi(t), the preference
value ξi, and the multiplier value associated with each node γi(t). We can improve
this analytic description by noting that the elements of the matrix Γ−1

i (T̃ ) used in
(A.1) and (A.2) evolve according to a recursion. Therefore, we now examine the
following four time-dependent constants:

e′
1,T̃

B′
T̃
Γ−1
i (T̃ )�T̃ , e′

1,T̃
B′

T̃
Γ−1
i (T̃ )eT̃ ,T̃ , e′

T̃ ,T̃
Γ−1
i (T̃ )�T̃ , e′

T̃ ,T̃
Γ−1
i (T̃ )eT̃ ,T̃ .

The structure of BT̃ allows us to precisely characterize Γ−1
i (T̃ ). To begin, we employ

the matrix inverse identity (I +D−1)−1 = D(I +D)−1 [12] to obtain

Γ−1
i (T̃ ) = ri

(
BT̃B

′
T̃

)−1
(
IT̃ + riq

−1
i

(
BT̃B

′
T̃

)−1
)−1

= ri
(
BT̃B

′
T̃

)−1
F−1
i (T̃ ).(A.4)

We now note that (BT̃B
′
T̃
)−1 is a tridiagonal matrix (this is shown, e.g., in [18]),

(
BT̃B

′
T̃

)−1
=

⎡
⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎦ .(A.5)D
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We focus the analysis now on the four expressions related to the matrix F−1
i (T̃ ):

Pi(T̃ ) = e′
T̃ ,T̃

F−1
i (T̃ )eT̃ ,T̃ , Si(T̃ )= e′

1,T̃
F−1
i (T̃ )eT̃ ,T̃ ,

Ui(T̃ ) = eT̃ ,T̃F
−1
i (T̃ )�T̃ , Wi(T̃ ) = e′

1,T̃
F−1
i (T̃ )�T̃ .

Each of these expressions selects a specific element or a row sum of the matrix F−1
i (T̃ ).

We aim to derive recursive formulas of the form Pi(T̃ +1) = f(Pi(T̃ )) for the compu-
tation of the four variables. Our approach utilizes ideas presented in [16, Chap. 17]
for the derivation of Kalman filters. First observe that Fi(T̃ + 1) is related to Fi(T̃ )
via a rank-one matrix update and bordering by one row and column:

Fi(T̃ + 1) =

[
Fi(T̃ ) + riq

−1
i eT̃ ,T̃ e

′
T̃ ,T̃

−riq
−1
i eT̃ ,T̃

−riq
−1
i e′

T̃ ,T̃
1 + riq

−1
i

]
=:

[
T U
V W

]
.(A.6)

The inverse is given as

F−1
i (T̃ + 1) :=

[
L M
N P

]
=

[
T −1 + T −1UPVT −1 −T −1UP

−PVT −1 (W −VT −1U)−1

]
.(A.7)

Computing F−1
i (T̃ + 1) requires computation of T −1. One can use the Sherman–

Morrison–Woodbury–Schur formula [16] to express T −1 as follows:

T −1 = F−1
i (T̃ )− riq

−1
i

F−1
i (T̃ )eT̃ ,T̃ e

′
T̃ ,T̃

F−1
i (T̃ )

1 + riq
−1
i e′

T̃ ,T̃
F−1
i (T̃ )eT̃ ,T̃

.(A.8)

This leads to an expression of F−1
i (T̃ + 1) in terms of F−1

i (T̃ ). Consider the term
Pi(T̃ ) = e′

T̃ ,T̃
F−1
i (T̃ )eT̃ ,T̃ and note that

Pi(T̃ + 1)

= (W −VT −1U)−1 = (1 + riq
−1
i − (riq

−1
i )2e′

T̃ ,T̃
T −1eT̃ ,T̃ )

−1

=

(
1 + riq

−1
i − (riq

−1
i )2e′

T̃ ,T̃

(
F−1
i (T̃ )− riq

−1
i

F−1
i (T̃ )eT̃ ,T̃ e

′
T̃ ,T̃

F−1
i (T̃ )

1 + riq
−1
i e′

T̃ ,T̃
F−1
i (T̃ )eT̃ ,T̃

)
eT̃ ,T̃

)−1

=

(
1 + riq

−1
i − (riq

−1
i )2(Pi(T̃ )− riq

−1
i

Pi(T̃ )Pi(T̃ )

1 + riq
−1
i Pi(T̃ )

)

)−1

=
1 + riq

−1
i Pi(T̃ )

1 + riq
−1
i + riq

−1
i Pi(T̃ )

.

By considering additionally that Pi(1) = (1 + riq
−1
i )−1, we have found a recursive

formula for the computation of Pi(T̃ ). Following a similar procedure, recursions for the
other three variables can be defined and are summarized in Table A.1. Additionally,
we introduce a fifth variable, which allows further simplifications later on. Define

Ki(T̃ ) = 1− Ui(T̃ ) = 1− e′
T̃ ,T̃

F−1
i (T̃ )eT̃ ,T̃ .(A.9)

A recursion for Ki(T̃ ) can be directly derived from the recursion for Ui(T̃ ) and is
given in Table A.1.
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Table A.1

Recursions for computation of the variables associated with Theorem 3.1.

Pi(T̃ + 1) =
1+riq

−1
i Pi(T̃ )

1+riq
−1
i +riq

−1
i Pi(T̃ )

Si(T̃ + 1) = riq
−1
i

Si(T̃ )

1+riq
−1
i +riq

−1
i Pi(T̃ )

Ui(T̃ + 1) =
1+riq

−1
i (Ui(T̃ )+Pi(T̃ ))

1+riq
−1
i +riq

−1
i Pi(T̃ )

Ki(T̃ + 1) = riq
−1
i

Ki(T̃ )

1+riq
−1
i +riq

−1
i Pi(T̃ )

Wi(T̃ + 1) = Wi(T̃ ) + riq
−1
i Si(T̃ )

1− Ui(T̃ )

1 + riq
−1
i + riq

−1
i Pi(T̃ )

Pi(1) = Si(1) = Ui(1) = Wi(1) = (1 + riq
−1
i )−1,Ki(1) = 1− (1 + riq

−1
i )−1

The variables in Table A.1 are intrinsically related to each other, summarized in
the following proposition.

Proposition A.1. The time-varying constants provided in Table A.1 satisfy the
following:

(i) riSi(T̃ ) = qiKi(T̃ ),(A.10)

(ii) Wi(T̃ ) = Pi(T̃ ),(A.11)

(iii) r−1
i e′

1,T̃
B′

T̃
Γ−1
i (T̃ )�T̃ = Pi(T̃ ),(A.12)

(iv) r−1
i q−1

i e′
1,T̃

B′
T̃
Γ−1
i (T̃ )eT̃ ,T̃ = r−1

i Ki(T̃ ),(A.13)

(v) q−1
i e′

T̃ ,T̃
Γ−1
i (T̃ )�T̃ = Ki(T̃ ),(A.14)

(vi) 1− q−1
i e′

T̃ ,T̃
Γ−1
i (T̃ )eT̃ ,T̃ = Pi(T̃ ).(A.15)

Proof. (i) It can be directly seen that both obey the same recursion, sinceKi(1) =
ri(qi + ri)

−1 = riq
−1
i Si(1).

(ii) We show the statement by induction. We have already shown the base case
holds, Wi(1) = Pi(1), so we proceed to the inductive step, assuming Pi(T̃ ) = Wi(T̃ ).
We work with the expression Wi(T̃ + 1) using the recursion

Wi(T̃ + 1) = Wi(T̃ ) +
riq

−1
i Si(T̃ )(1 − Ui(T̃ ))

1 + riq
−1
i + riq

−1
i Pi(T̃ )

.

We now invoke (A.9) and (A.10) stating Si(T̃ ) = qir
−1
i (1 − Ui(T̃ )) along with the

inductive step to obtain

Wi(T̃ + 1) = Pi(T̃ ) +
(1− Ui(T̃ ))

2

1 + riq
−1
i + riq

−1
i Pi(T̃ )

=
1 + riq

−1
i Pi(T̃ )

1 + riq
−1
i + riq

−1
i Pi(T̃ )

+
Pi(T̃ )(1 + riq

−1
i Pi(T̃ )) + (1 − Ui(T̃ ))

2 − 1

1 + riq
−1
i + riq

−1
i Pi(T̃ )

= Pi(T̃ + 1) + (1 + riq
−1
i + riq

−1
i Pi(t))

−1
(
Pi(T̃ )(1 + riq

−1
i Pi(T̃ ))

+Ui(T̃ )(Ui(T̃ )− 2)
)
.

We show in the next step that Pi(T̃ )(1 + riq
−1
i Pi(T̃ )) = Ui(T̃ )(2 − Ui(T̃ )), which

implies that the term

(1 + riq
−1
i + riq

−1
i Pi(T̃ ))

−1
(
Pi(T̃ )(1 + riq

−1
i Pi(T̃ )) + Ui(T̃ )(Ui(T̃ )− 2)

)
= 0.

D
ow

nl
oa

de
d 

06
/1

0/
24

 to
 1

32
.6

9.
19

5.
21

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A FINITE-TIME DUAL METHOD FOR NEGOTIATION 191

The base case is easily verified:

Pi(1)(1 + riq
−1
i Pi(1)) = (1 + riq

−1
i )−1(1 + riq

−1
i (1 + riq

−1
i )−1) =

1 + 2riq
−1
i

(1 + riq
−1
i )2

=
1 + 2riq

−1
i + 1− 1

(1 + riq
−1
i )2

=
2+ 2riq

−1
i

(1 + riq
−1
i )2

+
−1

(1 + riq
−1
i )2

= (1 + riq
−1
i )−1(2− (1 + riq

−1
i )−1)

= Ui(1)(2 − Ui(1)).

Next we show the inductive step,
(A.16)

Pi(T̃ + 1)(1 + riq
−1
i Pi(T̃ + 1))

=

(
1 + riq

−1
i Pi(T̃ )

1 + riq
−1
i + riq

−1
i Pi(T̃ )

)(
1 + riq

−1
i

1 + riq
−1
i Pi(T̃ )

1 + riq
−1
i + riq

−1
i Pi(T̃ )

)

=
(1+ 2riq

−1
i )(1 + riq

−1
i Pi(T̃ )) + riq

−1
i Ui(T̃ )(2− Ui(T̃ )) + (riq

−1
i )2Ui(T̃ )(2− Ui(T̃ ))

(1 + riq
−1
i + riq

−1
i Pi(T̃ ))2

,

(A.17)

Ui(T̃ + 1)(2− Ui(T̃ + 1))

=

(
1 + riq

−1
i Pi(T̃ ) + riq

−1
i Ui(T̃ )

1 + riq
−1
i + riq

−1
i Pi(T̃ )

)
×
(
1 + 2riq

−1
i + riq

−1
i Pi(T̃ )− riq

−1
i Ui(T̃ )

1 + riq
−1
i + riq

−1
i Pi(T̃ )

)

=
(1 + 2riq

−1
i )(1 + riq

−1
i Pi(T̃ )) + riq

−1
i Ui(T̃ )(2− Ui(T̃ )) + (riq

−1
i )2Ui(T̃ )(2− Ui(T̃ ))

(1 + riq
−1
i + riq

−1
i Pi(T̃ ))2

.

This concludes the inductive proof, as (A.16) is equal to (A.17).
(iii)

r−1
i e′

1,T̃
B′

T̃
Γ−1
i (T̃ )�T̃ = r−1

i �
′
T̃
Γ−1
i (T̃ )�T̃ = r−1

i rie
′
1,T̃

F−1
i (T̃ )�T̃ = Wi(T̃ ) = Pi(T̃ ).

(iv)

r−1
i q−1

i e′
1,T̃

B′
T̃
Γ−1
i (T̃ )eT̃ ,T̃ = r−1

i q−1
i �

′
T̃
Γ−1
i (T̃ )eT̃ ,T̃ = q−1

i e′
1,T̃

F−1
i (T̃ )eT̃ ,T̃

= q−1
i Si(T̃ ) = r−1

i Ki(T̃ ).

(v) We define a recursion for the expression on the left side and show that it is
equivalent to the recursion for Ki(T̃ ). Note that

q−1
i e′

T̃ ,T̃
Γ−1
i (T̃ )�T̃ = q−1

i ri
[
0 · · · 0 −1 1

]
F−1
i (T̃ )�T̃

= riq
−1
i (e′

T̃ ,T̃
F−1
i (T̃ )�T̃ − e′

T̃−1,T̃
F−1
i (T̃ )�T̃ ).

Define the auxiliary variable v1i (T̃ ) = q−1
i e′

T̃ ,T̃
Γ−1
i (T̃ )�T̃ and note that v1i (1) = ri(qi+

ri)
−1 = Wi(1). We must show that v1i (T̃ + 1) = Wi(T̃ + 1). Note that

v1i (T̃ + 1) = riq
−1
i

(
e′
T̃+1,T̃+1

F−1
i (T̃ + 1)�T̃+1 − e′

T̃ ,T̃+1
F−1
i (T̃ + 1)�T̃+1

)
.
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Now the expressions (A.6), (A.7), and (A.8) can be used to obtain (after algebraic
manipulation)

v1i (T̃ + 1) = riq
−1
i Ui(T̃ + 1)− riq

−1
i e′

T̃ ,T̃
(T −1 + T −1UPi(T̃ + 1)VT −1)�T̃

+ riq
−1
i e′

T̃ ,T̃
(−T −1UPi(T̃ + 1))

= riq
−1
i

1− Ui(T̃ )

1 + riq
−1
i + riq

−1
i Pi(T̃ )

= riq
−1
i

Ki(T̃ )

1 + riq
−1
i + riq

−1
i Pi(T̃ )

= Ki(T̃ + 1).

This gives the desired conclusion.
(vi) We show this relation again by induction. Define v2i (T̃ ) = 1 − q−1

i e′
T̃ ,T̃

Γ−1
i

(T̃ )eT̃ ,T̃ . Note that v
2
i (1) = 1−q−1

i (q−1
i +r−1

i )−1 = Pi(1). Again, after some algebraic
manipulation, we arrive at

v2i (T̃ + 1) = 1− q−1
i

(
e′
T̃+1,T̃+1

F−1
i (T̃ + 1)eT̃+1,T̃+1 − e′

T̃ ,T̃+1
F−1
i (T̃ + 1)eT̃+1,T̃+1

)
= 1− q−1

i Pi(T̃ + 1) + q−1
i

(
e′
T̃ ,T̃

T −1UPi(T̃ + 1)
)

= 1− q−1
i Pi(T̃ + 1)

(
1− riq

−1
i Pi(T̃ )

1 + riq
−1
i Pi(T̃ )

)

=
1 + ri

qi
Pi(T̃ )

1 + riq
−1
i + riq

−1
i Pi(T̃ )

= Pi(T̃ + 1).

Using the results of Proposition A.1 in the expressions (A.1) and (A.2) gives the
desired statement of Theorem 3.1.

Appendix B. Proof of Theorem 4.2. Consider the error after one step of
the algorithm, ε(t + 1) = μ(t + 1) − μ(t+1,x(t+1)), and recall that μ(t + 1) = μ(t) +
α(t)E′x̂t(T̃ ). Using the analytic expression for x̂t(T̃ ) given in (3.8) gives

μ(t+ 1) = μ(t)− α(t)E′Q−1P (T̃ )E
(
μ(t)− μ(t,x(t))

)
.

Now we can consider μ(t+1,x(t+1)). Using Corollary 4.1 one can write

μ(t+1,x(t+1)) = (E′Q−1P (T̃ − 1)E)−1E′(K(T̃ − 1)(x(t) + u(t)− ξ) + ξ)

= μ(t+1,x(t)+ut(t)) + (E′Q−1P (T̃ − 1)E)−1(E′K(T̃ − 1)(u(t)− ut(t)).

Additionally, we have (u(t)−ut(t)) = −R−1K(T̃ )E(μ(t)−μ(t,x(t))). Using Lemma 2.1,

which states that μ(t+1,x(t)+ut(t)) = μ(t,x(t)), one can write

μ(t+1,x(t+1))

= μ(t,x(t)) − (E′Q−1P (T̃ − 1)E)−1(E′K(T̃ − 1)R−1K(T̃ )E(μ(t) − μ(t,x(t))).

The following equivalence can then be used.
Proposition B.1.

K(T̃ − 1)R−1K(T̃ ) = Q−1(P (T̃ )− P (T̃ − 1)).
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Proof. The proof follows directly from Proposition A.1(ii) and application of the
recursions in Table A.1.

This leads to the following expression:

μ(t+1,x(t+1)) = μ(t,x(t)) + ε(t)− (E′Q−1P (T̃ − 1)E)−1E′Q−1P (T̃ )Eε(t).

By combining the two results for μ(t+ 1) and μ(t+1,x(t+1)), one obtains

ε(t+ 1) = μ(t)− α(t)E′Q−1P (T̃ )Eε(t)

−μ(t,x(t)) − ε(t) + (E′Q−1P (T̃ − 1)E)−1(E′Q−1P (T̃ )Eε(t)

= −α(t)E′Q−1P (T̃ )Eε(t) + (E′Q−1P (T̃ − 1)E)−1E′Q−1P (T̃ )Eε(t)

=
(
(E′Q−1P (T̃ − 1)E)−1 − α(t)I

)
E′Q−1P (T̃ )Eε(t).

Appendix C. Proof of Corollary 4.5. We consider the case where each agent
has identical control and state weights (e.g., Q = qIn and R = rIn). With this
assumption, we also note that the control gains for each agent are identical; that is,
Pi(T̃ ) = Pj(T̃ ) for all i, j. To simplify the notation, we write P (T̃ ) = P̃ (T̃ )In, where

P̃ (T̃ ) is a scalar. Performing a coordinate transformation Uε̃(t) = ε(t) on the system
(4.5) gives5

(
q

P̃ (T̃ − 1)
Λ−1 − α(t)I

)−1

ε̃(t+ 1) =
P̃ (T̃ )

q
Λε̃(t).(C.1)

This diagonalized system can be used to determine a range for α(t) that guarantees
the eigenvalues are inside the unit disc for all times t = 0, . . . , T − 1,

q

λi(E′E)P̃ (T̃ )

(
P̃ (T̃ )

P̃ (T̃ − 1)
− 1

)
≤ q

λj(E′E)P̃ (T̃ )

(
P̃ (T̃ )

P̃ (T̃ − 1)
+ 1

)
,

for i, j = 1, 2, . . . , n − 1. The bound in (4.7) follows directly from above. Observ-
ing that P̃ (T̃ ) > P̃ (T̃ − 1) and that the inequality should hold for all time and all
combinations of graph eigenvalues leads us to the following inequality:

λmax(E
′E)

λmin(E′E)
≤ P̃ (T̃ ) + P̃ (T̃ − 1)

P̃ (T̃ )− P̃ (T̃ − 1)
.

Using the recursion relationship for P̃ (T̃ ), we arrive at the statement of the corollary.
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